这是本节的多页打印视图。 点击此处打印.

返回本页常规视图.

调度、抢占和驱逐

在 Kubernetes 中,调度 (scheduling) 指的是确保 Pod 匹配到合适的节点, 以便 kubelet 能够运行它们。抢占 (Preemption) 指的是终止低优先级的 Pod 以便高优先级的 Pod 可以调度运行的过程。驱逐 (Eviction) 是在资源匮乏的节点上,主动让一个或多个 Pod 失效的过程。

在 Kubernetes 中,调度 (scheduling) 指的是确保 Pod 匹配到合适的节点, 以便 kubelet 能够运行它们。 抢占 (Preemption) 指的是终止低优先级的 Pod 以便高优先级的 Pod 可以调度运行的过程。 驱逐 (Eviction) 是在资源匮乏的节点上,主动让一个或多个 Pod 失效的过程。

调度

Pod 干扰

Pod 干扰 是指节点上的 Pod 被自愿或非自愿终止的过程。

自愿干扰是由应用程序所有者或集群管理员有意启动的。非自愿干扰是无意的, 可能由不可避免的问题触发,如节点耗尽资源或意外删除。

1 - Kubernetes 调度器

在 Kubernetes 中,调度 是指将 Pod 放置到合适的节点上,以便对应节点上的 Kubelet 能够运行这些 Pod。

调度概览

调度器通过 Kubernetes 的监测(Watch)机制来发现集群中新创建且尚未被调度到节点上的 Pod。 调度器会将所发现的每一个未调度的 Pod 调度到一个合适的节点上来运行。 调度器会依据下文的调度原则来做出调度选择。

如果你想要理解 Pod 为什么会被调度到特定的节点上, 或者你想要尝试实现一个自定义的调度器,这篇文章将帮助你了解调度。

kube-scheduler

kube-scheduler 是 Kubernetes 集群的默认调度器,并且是集群 控制面 的一部分。 如果你真得希望或者有这方面的需求,kube-scheduler 在设计上允许你自己编写一个调度组件并替换原有的 kube-scheduler。

Kube-scheduler 选择一个最佳节点来运行新创建的或尚未调度(unscheduled)的 Pod。 由于 Pod 中的容器和 Pod 本身可能有不同的要求,调度程序会过滤掉任何不满足 Pod 特定调度需求的节点。 或者,API 允许你在创建 Pod 时为它指定一个节点,但这并不常见,并且仅在特殊情况下才会这样做。

在一个集群中,满足一个 Pod 调度请求的所有节点称之为 可调度节点。 如果没有任何一个节点能满足 Pod 的资源请求, 那么这个 Pod 将一直停留在未调度状态直到调度器能够找到合适的 Node。

调度器先在集群中找到一个 Pod 的所有可调度节点,然后根据一系列函数对这些可调度节点打分, 选出其中得分最高的节点来运行 Pod。之后,调度器将这个调度决定通知给 kube-apiserver,这个过程叫做 绑定

在做调度决定时需要考虑的因素包括:单独和整体的资源请求、硬件/软件/策略限制、 亲和以及反亲和要求、数据局部性、负载间的干扰等等。

kube-scheduler 调度流程

kube-scheduler 给一个 Pod 做调度选择时包含两个步骤:

  1. 过滤
  2. 打分

过滤阶段会将所有满足 Pod 调度需求的节点选出来。 例如,PodFitsResources 过滤函数会检查候选节点的可用资源能否满足 Pod 的资源请求。 在过滤之后,得出一个节点列表,里面包含了所有可调度节点;通常情况下, 这个节点列表包含不止一个节点。如果这个列表是空的,代表这个 Pod 不可调度。

在打分阶段,调度器会为 Pod 从所有可调度节点中选取一个最合适的节点。 根据当前启用的打分规则,调度器会给每一个可调度节点进行打分。

最后,kube-scheduler 会将 Pod 调度到得分最高的节点上。 如果存在多个得分最高的节点,kube-scheduler 会从中随机选取一个。

支持以下两种方式配置调度器的过滤和打分行为:

  1. 调度策略 允许你配置过滤所用的 断言(Predicates) 和打分所用的 优先级(Priorities)
  2. 调度配置 允许你配置实现不同调度阶段的插件, 包括:QueueSortFilterScoreBindReservePermit 等等。 你也可以配置 kube-scheduler 运行不同的配置文件。

接下来

2 - 将 Pod 指派给节点

你可以约束一个 Pod 以便 限制 其只能在特定的节点上运行, 或优先在特定的节点上运行。 有几种方法可以实现这点,推荐的方法都是用 标签选择算符来进行选择。 通常这样的约束不是必须的,因为调度器将自动进行合理的放置(比如,将 Pod 分散到节点上, 而不是将 Pod 放置在可用资源不足的节点上等等)。但在某些情况下,你可能需要进一步控制 Pod 被部署到哪个节点。例如,确保 Pod 最终落在连接了 SSD 的机器上, 或者将来自两个不同的服务且有大量通信的 Pods 被放置在同一个可用区。

你可以使用下列方法中的任何一种来选择 Kubernetes 对特定 Pod 的调度:

节点标签

与很多其他 Kubernetes 对象类似,节点也有标签。 你可以手动地添加标签。 Kubernetes 也会为集群中所有节点添加一些标准的标签。 参见常用的标签、注解和污点以了解常见的节点标签。

节点隔离/限制

通过为节点添加标签,你可以准备让 Pod 调度到特定节点或节点组上。 你可以使用这个功能来确保特定的 Pod 只能运行在具有一定隔离性,安全性或监管属性的节点上。

如果使用标签来实现节点隔离,建议选择节点上的 kubelet 无法修改的标签键。 这可以防止受感染的节点在自身上设置这些标签,进而影响调度器将工作负载调度到受感染的节点。

NodeRestriction 准入插件防止 kubelet 使用 node-restriction.kubernetes.io/ 前缀设置或修改标签。

要使用该标签前缀进行节点隔离:

  1. 确保你在使用节点鉴权机制并且已经启用了 NodeRestriction 准入插件
  2. 将带有 node-restriction.kubernetes.io/ 前缀的标签添加到 Node 对象, 然后在节点选择器中使用这些标签。 例如,example.com.node-restriction.kubernetes.io/fips=trueexample.com.node-restriction.kubernetes.io/pci-dss=true

nodeSelector

nodeSelector 是节点选择约束的最简单推荐形式。你可以将 nodeSelector 字段添加到 Pod 的规约中设置你希望目标节点所具有的节点标签。 Kubernetes 只会将 Pod 调度到拥有你所指定的每个标签的节点上。

进一步的信息可参见将 Pod 指派给节点

亲和性与反亲和性

nodeSelector 提供了一种最简单的方法来将 Pod 约束到具有特定标签的节点上。 亲和性和反亲和性扩展了你可以定义的约束类型。使用亲和性与反亲和性的一些好处有:

  • 亲和性、反亲和性语言的表达能力更强。nodeSelector 只能选择拥有所有指定标签的节点。 亲和性、反亲和性为你提供对选择逻辑的更强控制能力。
  • 你可以标明某规则是“软需求”或者“偏好”,这样调度器在无法找到匹配节点时仍然调度该 Pod。
  • 你可以使用节点上(或其他拓扑域中)运行的其他 Pod 的标签来实施调度约束, 而不是只能使用节点本身的标签。这个能力让你能够定义规则允许哪些 Pod 可以被放置在一起。

亲和性功能由两种类型的亲和性组成:

  • 节点亲和性功能类似于 nodeSelector 字段,但它的表达能力更强,并且允许你指定软规则。
  • Pod 间亲和性/反亲和性允许你根据其他 Pod 的标签来约束 Pod。

节点亲和性

节点亲和性概念上类似于 nodeSelector, 它使你可以根据节点上的标签来约束 Pod 可以调度到哪些节点上。 节点亲和性有两种:

  • requiredDuringSchedulingIgnoredDuringExecution: 调度器只有在规则被满足的时候才能执行调度。此功能类似于 nodeSelector, 但其语法表达能力更强。
  • preferredDuringSchedulingIgnoredDuringExecution: 调度器会尝试寻找满足对应规则的节点。如果找不到匹配的节点,调度器仍然会调度该 Pod。

你可以使用 Pod 规约中的 .spec.affinity.nodeAffinity 字段来设置节点亲和性。 例如,考虑下面的 Pod 规约:

apiVersion: v1
kind: Pod
metadata:
  name: with-node-affinity
spec:
  affinity:
    nodeAffinity:
      requiredDuringSchedulingIgnoredDuringExecution:
        nodeSelectorTerms:
        - matchExpressions:
          - key: topology.kubernetes.io/zone
            operator: In
            values:
            - antarctica-east1
            - antarctica-west1
      preferredDuringSchedulingIgnoredDuringExecution:
      - weight: 1
        preference:
          matchExpressions:
          - key: another-node-label-key
            operator: In
            values:
            - another-node-label-value
  containers:
  - name: with-node-affinity
    image: registry.k8s.io/pause:2.0

在这一示例中,所应用的规则如下:

  • 节点必须包含一个键名为 topology.kubernetes.io/zone 的标签, 并且该标签的取值必须antarctica-east1antarctica-west1
  • 节点最好具有一个键名为 another-node-label-key 且取值为 another-node-label-value 的标签。

你可以使用 operator 字段来为 Kubernetes 设置在解释规则时要使用的逻辑操作符。 你可以使用 InNotInExistsDoesNotExistGtLt 之一作为操作符。

NotInDoesNotExist 可用来实现节点反亲和性行为。 你也可以使用节点污点 将 Pod 从特定节点上驱逐。

参阅使用节点亲和性来为 Pod 指派节点, 以了解进一步的信息。

节点亲和性权重

你可以为 preferredDuringSchedulingIgnoredDuringExecution 亲和性类型的每个实例设置 weight 字段,其取值范围是 1 到 100。 当调度器找到能够满足 Pod 的其他调度请求的节点时,调度器会遍历节点满足的所有的偏好性规则, 并将对应表达式的 weight 值加和。

最终的加和值会添加到该节点的其他优先级函数的评分之上。 在调度器为 Pod 作出调度决定时,总分最高的节点的优先级也最高。

例如,考虑下面的 Pod 规约:

apiVersion: v1
kind: Pod
metadata:
  name: with-affinity-anti-affinity
spec:
  affinity:
    nodeAffinity:
      requiredDuringSchedulingIgnoredDuringExecution:
        nodeSelectorTerms:
        - matchExpressions:
          - key: kubernetes.io/os
            operator: In
            values:
            - linux
      preferredDuringSchedulingIgnoredDuringExecution:
      - weight: 1
        preference:
          matchExpressions:
          - key: label-1
            operator: In
            values:
            - key-1
      - weight: 50
        preference:
          matchExpressions:
          - key: label-2
            operator: In
            values:
            - key-2
  containers:
  - name: with-node-affinity
    image: registry.k8s.io/pause:2.0

如果存在两个候选节点,都满足 preferredDuringSchedulingIgnoredDuringExecution 规则, 其中一个节点具有标签 label-1:key-1,另一个节点具有标签 label-2:key-2, 调度器会考察各个节点的 weight 取值,并将该权重值添加到节点的其他得分值之上,

逐个调度方案中设置节点亲和性

特性状态: Kubernetes v1.20 [beta]

在配置多个调度方案时, 你可以将某个方案与节点亲和性关联起来,如果某个调度方案仅适用于某组特殊的节点时, 这样做是很有用的。 要实现这点,可以在调度器配置中为 NodeAffinity 插件args 字段添加 addedAffinity。例如:

apiVersion: kubescheduler.config.k8s.io/v1beta3
kind: KubeSchedulerConfiguration

profiles:
  - schedulerName: default-scheduler
  - schedulerName: foo-scheduler
    pluginConfig:
      - name: NodeAffinity
        args:
          addedAffinity:
            requiredDuringSchedulingIgnoredDuringExecution:
              nodeSelectorTerms:
              - matchExpressions:
                - key: scheduler-profile
                  operator: In
                  values:
                  - foo

这里的 addedAffinity 除遵从 Pod 规约中设置的节点亲和性之外, 还适用于将 .spec.schedulerName 设置为 foo-scheduler。 换言之,为了匹配 Pod,节点需要满足 addedAffinity 和 Pod 的 .spec.NodeAffinity

由于 addedAffinity 对最终用户不可见,其行为可能对用户而言是出乎意料的。 应该使用与调度方案名称有明确关联的节点标签。

Pod 间亲和性与反亲和性

Pod 间亲和性与反亲和性使你可以基于已经在节点上运行的 Pod 的标签来约束 Pod 可以调度到的节点,而不是基于节点上的标签。

Pod 间亲和性与反亲和性的规则格式为“如果 X 上已经运行了一个或多个满足规则 Y 的 Pod, 则这个 Pod 应该(或者在反亲和性的情况下不应该)运行在 X 上”。 这里的 X 可以是节点、机架、云提供商可用区或地理区域或类似的拓扑域, Y 则是 Kubernetes 尝试满足的规则。

你通过标签选择算符 的形式来表达规则(Y),并可根据需要指定选关联的名字空间列表。 Pod 在 Kubernetes 中是名字空间作用域的对象,因此 Pod 的标签也隐式地具有名字空间属性。 针对 Pod 标签的所有标签选择算符都要指定名字空间,Kubernetes 会在指定的名字空间内寻找标签。

你会通过 topologyKey 来表达拓扑域(X)的概念,其取值是系统用来标示域的节点标签键。 相关示例可参见常用标签、注解和污点

Pod 间亲和性与反亲和性的类型

节点亲和性类似,Pod 的亲和性与反亲和性也有两种类型:

  • requiredDuringSchedulingIgnoredDuringExecution
  • preferredDuringSchedulingIgnoredDuringExecution

例如,你可以使用 requiredDuringSchedulingIgnoredDuringExecution 亲和性来告诉调度器, 将两个服务的 Pod 放到同一个云提供商可用区内,因为它们彼此之间通信非常频繁。 类似地,你可以使用 preferredDuringSchedulingIgnoredDuringExecution 反亲和性来将同一服务的多个 Pod 分布到多个云提供商可用区中。

要使用 Pod 间亲和性,可以使用 Pod 规约中的 .affinity.podAffinity 字段。 对于 Pod 间反亲和性,可以使用 Pod 规约中的 .affinity.podAntiAffinity 字段。

Pod 亲和性示例

考虑下面的 Pod 规约:

apiVersion: v1
kind: Pod
metadata:
  name: with-pod-affinity
spec:
  affinity:
    podAffinity:
      requiredDuringSchedulingIgnoredDuringExecution:
      - labelSelector:
          matchExpressions:
          - key: security
            operator: In
            values:
            - S1
        topologyKey: topology.kubernetes.io/zone
    podAntiAffinity:
      preferredDuringSchedulingIgnoredDuringExecution:
      - weight: 100
        podAffinityTerm:
          labelSelector:
            matchExpressions:
            - key: security
              operator: In
              values:
              - S2
          topologyKey: topology.kubernetes.io/zone
  containers:
  - name: with-pod-affinity
    image: registry.k8s.io/pause:2.0

本示例定义了一条 Pod 亲和性规则和一条 Pod 反亲和性规则。Pod 亲和性规则配置为 requiredDuringSchedulingIgnoredDuringExecution,而 Pod 反亲和性配置为 preferredDuringSchedulingIgnoredDuringExecution

亲和性规则表示,仅当节点和至少一个已运行且有 security=S1 的标签的 Pod 处于同一区域时,才可以将该 Pod 调度到节点上。 更确切的说,调度器必须将 Pod 调度到具有 topology.kubernetes.io/zone=V 标签的节点上,并且集群中至少有一个位于该可用区的节点上运行着带有 security=S1 标签的 Pod。

反亲和性规则表示,如果节点处于 Pod 所在的同一可用区且至少一个 Pod 具有 security=S2 标签,则该 Pod 不应被调度到该节点上。 更确切地说, 如果同一可用区中存在其他运行着带有 security=S2 标签的 Pod 节点, 并且节点具有标签 topology.kubernetes.io/zone=R,Pod 不能被调度到该节点上。

查阅设计文档 以进一步熟悉 Pod 亲和性与反亲和性的示例。

你可以针对 Pod 间亲和性与反亲和性为其 operator 字段使用 InNotInExistsDoesNotExist 等值。

原则上,topologyKey 可以是任何合法的标签键。出于性能和安全原因,topologyKey 有一些限制:

  • 对于 Pod 亲和性而言,在 requiredDuringSchedulingIgnoredDuringExecutionpreferredDuringSchedulingIgnoredDuringExecution 中,topologyKey 不允许为空。
  • 对于 requiredDuringSchedulingIgnoredDuringExecution 要求的 Pod 反亲和性, 准入控制器 LimitPodHardAntiAffinityTopology 要求 topologyKey 只能是 kubernetes.io/hostname。如果你希望使用其他定制拓扑逻辑, 你可以更改准入控制器或者禁用之。

除了 labelSelectortopologyKey,你也可以指定 labelSelector 要匹配的命名空间列表,方法是在 labelSelectortopologyKey 所在层同一层次上设置 namespaces。 如果 namespaces 被忽略或者为空,则默认为 Pod 亲和性/反亲和性的定义所在的命名空间。

名字空间选择算符

特性状态: Kubernetes v1.24 [stable]

用户也可以使用 namespaceSelector 选择匹配的名字空间,namespaceSelector 是对名字空间集合进行标签查询的机制。 亲和性条件会应用到 namespaceSelector 所选择的名字空间和 namespaces 字段中所列举的名字空间之上。 注意,空的 namespaceSelector{})会匹配所有名字空间,而 null 或者空的 namespaces 列表以及 null 值 namespaceSelector 意味着“当前 Pod 的名字空间”。

更实际的用例

Pod 间亲和性与反亲和性在与更高级别的集合(例如 ReplicaSet、StatefulSet、 Deployment 等)一起使用时,它们可能更加有用。 这些规则使得你可以配置一组工作负载,使其位于所定义的同一拓扑中; 例如优先将两个相关的 Pod 置于相同的节点上。

以一个三节点的集群为例。你使用该集群运行一个带有内存缓存(例如 Redis)的 Web 应用程序。 在此例中,还假设 Web 应用程序和内存缓存之间的延迟应尽可能低。 你可以使用 Pod 间的亲和性和反亲和性来尽可能地将该 Web 服务器与缓存并置。

在下面的 Redis 缓存 Deployment 示例中,副本上设置了标签 app=storepodAntiAffinity 规则告诉调度器避免将多个带有 app=store 标签的副本部署到同一节点上。 因此,每个独立节点上会创建一个缓存实例。

apiVersion: apps/v1
kind: Deployment
metadata:
  name: redis-cache
spec:
  selector:
    matchLabels:
      app: store
  replicas: 3
  template:
    metadata:
      labels:
        app: store
    spec:
      affinity:
        podAntiAffinity:
          requiredDuringSchedulingIgnoredDuringExecution:
          - labelSelector:
              matchExpressions:
              - key: app
                operator: In
                values:
                - store
            topologyKey: "kubernetes.io/hostname"
      containers:
      - name: redis-server
        image: redis:3.2-alpine

下例的 Deployment 为 Web 服务器创建带有标签 app=web-store 的副本。 Pod 亲和性规则告诉调度器将每个副本放到存在标签为 app=store 的 Pod 的节点上。 Pod 反亲和性规则告诉调度器决不要在单个节点上放置多个 app=web-store 服务器。

apiVersion: apps/v1
kind: Deployment
metadata:
  name: web-server
spec:
  selector:
    matchLabels:
      app: web-store
  replicas: 3
  template:
    metadata:
      labels:
        app: web-store
    spec:
      affinity:
        podAntiAffinity:
          requiredDuringSchedulingIgnoredDuringExecution:
          - labelSelector:
              matchExpressions:
              - key: app
                operator: In
                values:
                - web-store
            topologyKey: "kubernetes.io/hostname"
        podAffinity:
          requiredDuringSchedulingIgnoredDuringExecution:
          - labelSelector:
              matchExpressions:
              - key: app
                operator: In
                values:
                - store
            topologyKey: "kubernetes.io/hostname"
      containers:
      - name: web-app
        image: nginx:1.16-alpine

创建前面两个 Deployment 会产生如下的集群布局,每个 Web 服务器与一个缓存实例并置, 并分别运行在三个独立的节点上。

node-1 node-2 node-3
webserver-1 webserver-2 webserver-3
cache-1 cache-2 cache-3

总体效果是每个缓存实例都非常可能被在同一个节点上运行的某个客户端访问。 这种方法旨在最大限度地减少偏差(负载不平衡)和延迟。

你可能还有使用 Pod 反亲和性的一些其他原因。 参阅 ZooKeeper 教程 了解一个 StatefulSet 的示例,该 StatefulSet 配置了反亲和性以实现高可用, 所使用的是与此例相同的技术。

nodeName

nodeName 是比亲和性或者 nodeSelector 更为直接的形式。nodeName 是 Pod 规约中的一个字段。如果 nodeName 字段不为空,调度器会忽略该 Pod, 而指定节点上的 kubelet 会尝试将 Pod 放到该节点上。 使用 nodeName 规则的优先级会高于使用 nodeSelector 或亲和性与非亲和性的规则。

使用 nodeName 来选择节点的方式有一些局限性:

  • 如果所指代的节点不存在,则 Pod 无法运行,而且在某些情况下可能会被自动删除。
  • 如果所指代的节点无法提供用来运行 Pod 所需的资源,Pod 会失败, 而其失败原因中会给出是否因为内存或 CPU 不足而造成无法运行。
  • 在云环境中的节点名称并不总是可预测的,也不总是稳定的。

下面是一个使用 nodeName 字段的 Pod 规约示例:

apiVersion: v1
kind: Pod
metadata:
  name: nginx
spec:
  containers:
  - name: nginx
    image: nginx
  nodeName: kube-01

上面的 Pod 只能运行在节点 kube-01 之上。

Pod 拓扑分布约束

你可以使用 拓扑分布约束(Topology Spread Constraints) 来控制 Pod 在集群内故障域之间的分布, 故障域的示例有区域(Region)、可用区(Zone)、节点和其他用户自定义的拓扑域。 这样做有助于提升性能、实现高可用或提升资源利用率。

阅读 Pod 拓扑分布约束 以进一步了解这些约束的工作方式。

接下来

3 - Pod 开销

特性状态: Kubernetes v1.24 [stable]

在节点上运行 Pod 时,Pod 本身占用大量系统资源。这些是运行 Pod 内容器所需资源之外的资源。 在 Kubernetes 中,POD 开销 是一种方法,用于计算 Pod 基础设施在容器请求和限制之上消耗的资源。

在 Kubernetes 中,Pod 的开销是根据与 Pod 的 RuntimeClass 相关联的开销在准入时设置的。

如果启用了 Pod Overhead,在调度 Pod 时,除了考虑容器资源请求的总和外,还要考虑 Pod 开销。 类似地,kubelet 将在确定 Pod cgroups 的大小和执行 Pod 驱逐排序时也会考虑 Pod 开销。

配置 Pod 开销

你需要确保使用一个定义了 overhead 字段的 RuntimeClass

使用示例

要使用 Pod 开销,你需要一个定义了 overhead 字段的 RuntimeClass。 作为例子,下面的 RuntimeClass 定义中包含一个虚拟化所用的容器运行时, RuntimeClass 如下,其中每个 Pod 大约使用 120MiB 用来运行虚拟机和寄宿操作系统:

apiVersion: node.k8s.io/v1
kind: RuntimeClass
metadata:
  name: kata-fc
handler: kata-fc
overhead:
  podFixed:
    memory: "120Mi"
    cpu: "250m"

通过指定 kata-fc RuntimeClass 处理程序创建的工作负载会将内存和 CPU 开销计入资源配额计算、节点调度以及 Pod cgroup 尺寸确定。

假设我们运行下面给出的工作负载示例 test-pod:

apiVersion: v1
kind: Pod
metadata:
  name: test-pod
spec:
  runtimeClassName: kata-fc
  containers:
  - name: busybox-ctr
    image: busybox:1.28
    stdin: true
    tty: true
    resources:
      limits:
        cpu: 500m
        memory: 100Mi
  - name: nginx-ctr
    image: nginx
    resources:
      limits:
        cpu: 1500m
        memory: 100Mi

在准入阶段 RuntimeClass 准入控制器 更新工作负载的 PodSpec 以包含 RuntimeClass 中定义的 overhead。如果 PodSpec 中已定义该字段,该 Pod 将会被拒绝。 在这个例子中,由于只指定了 RuntimeClass 名称,所以准入控制器更新了 Pod,使之包含 overhead

在 RuntimeClass 准入控制器进行修改后,你可以查看更新后的 PodSpec:

kubectl get pod test-pod -o jsonpath='{.spec.overhead}'

输出:

map[cpu:250m memory:120Mi]

如果定义了 ResourceQuota, 则容器请求的总量以及 overhead 字段都将计算在内。

当 kube-scheduler 决定在哪一个节点调度运行新的 Pod 时,调度器会兼顾该 Pod 的 overhead 以及该 Pod 的容器请求总量。在这个示例中,调度器将资源请求和开销相加, 然后寻找具备 2.25 CPU 和 320 MiB 内存可用的节点。

一旦 Pod 被调度到了某个节点, 该节点上的 kubelet 将为该 Pod 新建一个 cgroup。 底层容器运行时将在这个 Pod 中创建容器。

如果该资源对每一个容器都定义了一个限制(定义了限制值的 Guaranteed QoS 或者 Burstable QoS),kubelet 会为与该资源(CPU 的 cpu.cfs_quota_us 以及内存的 memory.limit_in_bytes) 相关的 Pod cgroup 设定一个上限。该上限基于 PodSpec 中定义的容器限制总量与 overhead 之和。

对于 CPU,如果 Pod 的 QoS 是 Guaranteed 或者 Burstable,kubelet 会基于容器请求总量与 PodSpec 中定义的 overhead 之和设置 cpu.shares

请看这个例子,验证工作负载的容器请求:

kubectl get pod test-pod -o jsonpath='{.spec.containers[*].resources.limits}'

容器请求总计 2000m CPU 和 200MiB 内存:

map[cpu: 500m memory:100Mi] map[cpu:1500m memory:100Mi]

对照从节点观察到的情况来检查一下:

kubectl describe node | grep test-pod -B2

该输出显示请求了 2250m CPU 以及 320MiB 内存。请求包含了 Pod 开销在内:

  Namespace    Name       CPU Requests  CPU Limits   Memory Requests  Memory Limits  AGE
  ---------    ----       ------------  ----------   ---------------  -------------  ---
  default      test-pod   2250m (56%)   2250m (56%)  320Mi (1%)       320Mi (1%)     36m

验证 Pod cgroup 限制

在工作负载所运行的节点上检查 Pod 的内存 cgroups。在接下来的例子中, 将在该节点上使用具备 CRI 兼容的容器运行时命令行工具 crictl。 这是一个显示 Pod 开销行为的高级示例, 预计用户不需要直接在节点上检查 cgroups。 首先在特定的节点上确定该 Pod 的标识符:

# 在该 Pod 被调度到的节点上执行如下命令:
POD_ID="$(sudo crictl pods --name test-pod -q)"

可以依此判断该 Pod 的 cgroup 路径:

# 在该 Pod 被调度到的节点上执行如下命令:
sudo crictl inspectp -o=json $POD_ID | grep cgroupsPath

执行结果的 cgroup 路径中包含了该 Pod 的 pause 容器。Pod 级别的 cgroup 在即上一层目录。

  "cgroupsPath": "/kubepods/podd7f4b509-cf94-4951-9417-d1087c92a5b2/7ccf55aee35dd16aca4189c952d83487297f3cd760f1bbf09620e206e7d0c27a"

在这个例子中,该 Pod 的 cgroup 路径是 kubepods/podd7f4b509-cf94-4951-9417-d1087c92a5b2。 验证内存的 Pod 级别 cgroup 设置:

# 在该 Pod 被调度到的节点上执行这个命令。
# 另外,修改 cgroup 的名称以匹配为该 Pod 分配的 cgroup。
 cat /sys/fs/cgroup/memory/kubepods/podd7f4b509-cf94-4951-9417-d1087c92a5b2/memory.limit_in_bytes

和预期的一样,这一数值为 320 MiB。

335544320

可观察性

kube-state-metrics 中可以通过 kube_pod_overhead_* 指标来协助确定何时使用 Pod 开销, 以及协助观察以一个既定开销运行的工作负载的稳定性。 该特性在 kube-state-metrics 的 1.9 发行版本中不可用,不过预计将在后续版本中发布。 在此之前,用户需要从源代码构建 kube-state-metrics。

接下来

4 - Pod 调度就绪态

特性状态: Kubernetes v1.26 [alpha]

Pod 一旦创建就被认为准备好进行调度。 Kubernetes 调度程序尽职尽责地寻找节点来放置所有待处理的 Pod。 然而,在实际环境中,会有一些 Pod 可能会长时间处于"缺少必要资源"状态。 这些 Pod 实际上以一种不必要的方式扰乱了调度器(以及下游的集成方,如 Cluster AutoScaler)。

通过指定或删除 Pod 的 .spec.schedulingGates,可以控制 Pod 何时准备好被纳入考量进行调度。

配置 Pod schedulingGates

schedulingGates 字段包含一个字符串列表,每个字符串文字都被视为 Pod 在被认为可调度之前应该满足的标准。 该字段只能在创建 Pod 时初始化(由客户端创建,或在准入期间更改)。 创建后,每个 schedulingGate 可以按任意顺序删除,但不允许添加新的调度门控。

s1 s1 --> if s2 --> if: scheduling gate removed if --> s2: no if --> s3: yes s3 --> s4 s4 --> [*]
-->
stateDiagram-v2 s1: 创建 Pod s2: Pod 调度门控 s3: Pod 调度就绪 s4: Pod 运行 if: 调度门控为空? [*] --> s1 s1 --> if s2 --> if: 移除了调度门控 if --> s2: 否 if --> s3: 是 s3 --> s4 s4 --> [*]

用法示例

要将 Pod 标记为未准备好进行调度,你可以在创建 Pod 时附带一个或多个调度门控,如下所示:

apiVersion: v1
kind: Pod
metadata:
  name: test-pod
spec:
  schedulingGates:
  - name: foo
  - name: bar
  containers:
  - name: pause
    image: registry.k8s.io/pause:3.6

Pod 创建后,你可以使用以下方法检查其状态:

kubectl get pod test-pod

输出显示它处于 SchedulingGated 状态:

NAME       READY   STATUS            RESTARTS   AGE
test-pod   0/1     SchedulingGated   0          7s

你还可以通过运行以下命令检查其 schedulingGates 字段:

kubectl get pod test-pod -o jsonpath='{.spec.schedulingGates}'

输出是:

[{"name":"foo"},{"name":"bar"}]

要通知调度程序此 Pod 已准备好进行调度,你可以通过重新应用修改后的清单来完全删除其 schedulingGates

apiVersion: v1
kind: Pod
metadata:
  name: test-pod
spec:
  containers:
  - name: pause
    image: registry.k8s.io/pause:3.6

你可以通过运行以下命令检查 schedulingGates 是否已被清空:

kubectl get pod test-pod -o jsonpath='{.spec.schedulingGates}'

预计输出为空,你可以通过运行下面的命令来检查它的最新状态:

kubectl get pod test-pod -o wide

鉴于 test-pod 不请求任何 CPU/内存资源,预计此 Pod 的状态会从之前的 SchedulingGated 转变为 Running

NAME       READY   STATUS    RESTARTS   AGE   IP         NODE  
test-pod   1/1     Running   0          15s   10.0.0.4   node-2

可观测性

指标 scheduler_pending_pods 带有一个新标签 "gated", 以区分 Pod 是否已尝试调度但被宣称不可调度,或明确标记为未准备好调度。 你可以使用 scheduler_pending_pods{queue="gated"} 来检查指标结果。

接下来